

Fast X-Ray Detectors for the APS and Elsewhere

Bernhard W. Adams¹

¹Advanced Photon Source Argonne National Laboratory

2010-06-11

X-Ray Detector Needs

What is already out there

Synchrotron

Medical

Application examples

MCP or columnar structure as photocathode

X-Ray Detector Needs

What is already out there

Synchrotron

Medical

Application examples

MCP or columnar structure as photocathode

X-Ray Detector Needs

- Synchrotron: 2-d spatial and/or time resolution
- XFEL: 2-d spatial resolution, tons of x-rays
- medical: imaging, PET
- homeland security: large-area imaging
- some special applications

X-Ray Detector Needs

What is already out there

Synchrotron

Medical

Application examples

MCP or columnar structure as photocathode

What is Already Out There

- ▶ CCDs: direct-absorption and scintillator; can be gated, in principle, to μ s or so, but not usually done. Spatial resolution down to a few microns, without gating down to ms resolution, \$\$ / cm²
- ▶ Pixel-array detectors, can be gated to 100 ns, spatial resolution ca. 100 microns, without gating down to μ s resolution, depending on ROI, \$\$ / cm²
- wire chamber (gas avalanche amplification): location/time-tagged events μ s resolution, area is cheap
- Our detector produces a stream of location-time-tagged events, not just events in a gate interval. Like wire chamber, but faster/higher rate and better x-ray stopping power, area is cheap

X-Ray Detector Needs

What is already out there

Synchrotron

Medical

Application examples

MCP or columnar structure as photocathode

Synchrotron

- Synchrotron: 2-d spatial and/or time resolution
- wide range of event rates, possibly spatially highly inhomogeneous photon load
- use scintillator with visible-light photocathode: slow response or low efficiency
- planar, direct-conversion photocathode: fast, low efficiency
- NB: at synchrotron, 100 ns time resolution is as good as 100 ps (bunch duration), faster than 100 ps very valuable

X-Ray Detector Needs

What is already out there

Synchrotron

Medical

Application examples

MCP or columnar structure as photocathode

Medical

- ► High detection efficiency at higher photon energies: 30 ... 150 keV, or even 511 keV for PET
- medical x-ray needs "no" time resolution, absorption-edge angiography could profit from ca. 1 ms, PET needs 100 ps or better
- large area

X-Ray Detector Needs

What is already out there

Synchrotron

Medical

Application examples

MCP or columnar structure as photocathode

Application Example: Protein Crystallography

white-beam Laue diffraction: one crystal, many λ

rotate crystal
to obtain series
of diffraction maps
intensities in diffraction s
FT into structure

LAPPD instead of CCD: no readout overhead rapid rot., continuous readout

Example: Dynamic Light Scattering of X-Rays

time evolution of spatial correlations

measure correlation of speckle patterns at 2 times

heterodyne speckle
static scatterer
speckle patterns
dynamic scatterer

0.01 \$\frac{1}{9} 0.00 \$\sigma\$
0.00 0.01 0.02 0.03

challenge: wide dyn. range

M. Sutton et al., Opt. Expr. 11, 2268-2277 (2003)

Example: XFEL: Tons of Photons in a Pulse

Problem at XFEL: Detector overload by huge pulse

solution: spread flux in time and space in time: use efficient, slow scintillator

in space: grazing incidence

X-Ray Detector Needs

What is already out there

Synchrotron

Medical

Application examples

MCP or columnar structure as photocathode

MCP or columnar structure as photocathode

Leverage MCP/ALD technology developed in LAPPD

electron escape depth ca. 100 nm x-rays mostly pass through CsI $10 \text{ keV} \rightarrow \text{ca. } 1\%$ abs.

many kV 1kV

use grazing incidence

→ MCP or nanocolumns
with ALD'd photocathode

X-Ray Detector Needs

What is already out there

Synchrotron

Medical

Application examples

MCP or columnar structure as photocathode

Nuclear Resonance, Time Domain

forward scattering from foils of increasing thickness

v. Bürck et al., PRB 46, 6207-6211 (1992)

How this is measured on a synchrotron

Using synchrotron radiation: pulsed, broadband source

Gated MCP

new idea: use gating pulse to actively clear out MCP for 100 ps during SR pulse MCP is ready 100 ps after SR pulse, no "afterglow"

100-ps, 100V pulse stripline

100-ps gated MCP

Katayama et al., Rev. Sci. Instrum. **62**, 124 (1990)

 10^{-10} contrast possible?

